Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triethylammonium 3,4-dihydroxybenzoate

Li-Cai Zhu

School of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China Correspondence e-mail: licaizhu1977@yahoo.com.cn

Received 26 October 2010; accepted 2 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.107; data-to-parameter ratio = 14.4.

In the title compound, $C_6H_{16}N^+ \cdot C_7H_5O_4^-$, the hydroxy groups of the 3,4-dihydroxybenzoate anion form $O-H \cdots O$ hydrogen bonds to the carboxylate groups of two adjacent anions, generating layers propagating in the *ac* plane. The triethylammonium cations lie between these layers, forming N- $H \cdots O$ hydrogen bonds to the carboxylate groups of the anions. The structure is consolidated by weak intermolecular $C-H \cdots O$ interactions.

Related literature

For the pharmacological activity of protocatechuic acid, see: Guan *et al.* (2006); Lin *et al.* (2009); Yip *et al.* (2006). For related structures, see: Li *et al.* (2007); Mazurek *et al.* (2007).

Experimental

Crystal data $C_6H_{16}N^+ \cdot C_7H_5O_4^ M_r = 255.31$ Orthorhombic, *Pbca* a = 12.4341 (16) Å b = 13.7227 (18) Å c = 16.150 (2) Å

V = 2755.7 (6) Å³ Z = 8Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.32 \times 0.28 \times 0.28 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer 13215 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.107$	independent and constrained
S = 1.03	refinement
2483 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
1 restraint	

2483 independent reflections

 $R_{\rm int} = 0.028$

1981 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots O2^{i}$	0.82	1.85	2.6574 (14)	166
O4−H4···O1 ⁱⁱ	0.82	1.81	2.6321 (15)	178
C7−H7···O1 ⁱⁱ	0.93	2.57	3.235 (2)	128
$N1 - H12 \cdot \cdot \cdot O2^{iii}$	0.92	1.87	2.776 (2)	170
$C1 - H1B \cdots O3^{iv}$	0.97	2.57	3.409 (2)	145
$C3-H3A\cdotsO1^{v}$	0.97	2.55	3.516 (2)	177
$C3-H3B\cdots O3^{vi}$	0.97	2.56	3.351 (2)	139
$C10-H10\cdots O4^{vii}$	0.93	2.38	3.222 (2)	150
Symmetry codes:	(i) <i>x</i> , − <i>y</i> ·	$+\frac{1}{2}, z + \frac{1}{2};$ (ii) $x - \frac{1}{2}, -y + \frac{1}{2},$	-z + 1; (iii)

Symmetry codes: (1) $x, -y + \frac{2}{2}, z + \frac{2}{3};$ (1) $x - \frac{2}{2}, -y + \frac{2}{2}, -z + 1;$ (11) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1;$ (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2};$ (v) x - 1, y + 1, z; (vi) $x - \frac{1}{2}, y + 1, -z + \frac{3}{2};$ (vii) $x + \frac{1}{2}, y, -z + \frac{3}{2}.$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author acknowledges South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2348).

References

- Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.
- Guan, S., Bao, Y. M., Jiang, B. & An, L. J. (2006). Eur. J. Pharmacol. 538, 73–79.
- Li, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884.
- Lin, C. Y., Huang, C. S., Huang, C. Y. & Yin, M. C. (2009). J. Agric. Food Chem. 57, 6661–6667.
- Mazurek, J., Dova, E. & Helmond, R. (2007). Acta Cryst. E63, o3289.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yip, E. C. H., Chan, A. S. L., Pang, H., Tam, Y. K. & Wong, Y. H. (2006). Cell Biol. Toxicol. 22, 293–302.

supplementary materials

Acta Cryst. (2010). E66, o3092 [doi:10.1107/S1600536810044764]

Triethylammonium 3,4-dihydroxybenzoate

L.-C. Zhu

Comment

Protocatechuic acid (3,4-dihydroxybenzoic acid) is one of the main secondary metabolites in the plant kingdom (Guan *et al.*, 2006). Its derivatives possess diverse pharmacological activities (Lin *et al.*, 2009; Yip *et al.*, 2006). The molecular and crystal structure of the title compound is presented in this article.

The asymmetric unit of the title compound contains a 3,4-dihydroxybenzoate anion and a triethylammonium cation (Fig. 1). The bond distances and angles in the title compound sgree with the corresponding bond distances and angles reported in related structures (Li *et al.*, 2007; Mazurek *et al.*, 2007). The carboxylate group O1/O2/C13 is oriented with respect to the benzene ring at 23.18 (6)°. The hydroxy groups of the anion form O—H…O hydrogen bonds to the carboxylate groups of two other anions (Table 1), generating two-dimensional layers. The triethylammonium cations lie between these layers, forming N—H…O hydrogen bonds to the carboxylate groups of the anions (Fig. 2). The structure is further consolidated by weak intermolecular interactions of the type C—H…O. (Table 1).

Experimental

A mixture of protocatechuic acid (0.31 g, 2 mmol) and triethylamine (0.28 ml, 2 mmol) was stirred in methanol (20 ml) for 0.5 h at room temperature. After several days colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solution.

Refinement

 H_{12} atom of triethylammonium cation was found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.89 Å and $U_{iso}(H) = 1.5U_{eq}(N)$. All other H atoms were positioned geometrically and refined as riding, with O—H = 0.82 Å and C—H = 0.93, 0.96 or 0.97 Å, for aryl, methyl and methylene type H atoms, respectively, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C, O)$.

Figures

Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The molecular packing showing the intermolecular hydrogen bonding interactions as dashed lines.

F(000) = 1104

 $\theta = 2.5 - 27.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Block, colourless $0.32 \times 0.28 \times 0.28$ mm

 $D_{\rm x} = 1.231 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4281 reflections

Triethylammonium 3,4-dihydroxybenzoate

Crystal data

$C_6H_{16}N^+ \cdot C_7H_5O_4^-$
$M_r = 255.31$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
<i>a</i> = 12.4341 (16) Å
<i>b</i> = 13.7227 (18) Å
c = 16.150 (2) Å
$V = 2755.7 (6) \text{ Å}^3$
Z = 8

Data collection

Bruker APEXII area-detector diffractometer	1981 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
graphite	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
φ and ω scans	$h = -14 \rightarrow 14$
13215 measured reflections	$k = -14 \rightarrow 16$
2483 independent reflections	$l = -16 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 0.7195P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
2483 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
1 restraint	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site logation: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0034 (5) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C6	0.3472 (2)	0.97892 (16)	0.41436 (15)	0.0812 (7)
H6A	0.3882	1.0381	0.4166	0.122*
H6B	0.3285	0.9650	0.3579	0.122*
H6C	0.3893	0.9263	0.4364	0.122*
C1	0.32649 (16)	0.94605 (13)	0.60034 (13)	0.0677 (6)
H1A	0.3919	0.9299	0.5706	0.081*
H1B	0.2828	0.8876	0.6034	0.081*
C2	0.3554 (2)	0.97807 (17)	0.68702 (15)	0.0893 (7)
H2A	0.3989	1.0358	0.6844	0.134*
H2B	0.3948	0.9271	0.7142	0.134*
H2C	0.2908	0.9917	0.7175	0.134*
C3	0.16443 (13)	1.05597 (13)	0.59298 (13)	0.0589 (5)
H3A	0.1310	1.1040	0.5572	0.071*
H3B	0.1820	1.0881	0.6448	0.071*
C5	0.24679 (17)	0.99035 (14)	0.46451 (14)	0.0679 (6)
H5A	0.2086	0.9287	0.4650	0.081*
H5B	0.2008	1.0381	0.4378	0.081*
C4	0.08368 (18)	0.97565 (17)	0.61030 (18)	0.0940 (8)
H4A	0.0698	0.9401	0.5602	0.141*
H4B	0.0179	1.0038	0.6302	0.141*
H4C	0.1123	0.9322	0.6514	0.141*
C7	0.79526 (10)	0.26562 (9)	0.58103 (8)	0.0290 (3)
H7	0.7503	0.2736	0.5355	0.035*
C12	0.90639 (10)	0.26034 (9)	0.56871 (8)	0.0279 (3)
C13	0.95215 (10)	0.27035 (9)	0.48341 (8)	0.0305 (3)
C10	0.92903 (11)	0.24288 (10)	0.71567 (9)	0.0365 (3)
H10	0.9743	0.2354	0.7611	0.044*
C9	0.81903 (11)	0.24855 (10)	0.72768 (8)	0.0323 (3)
C8	0.75071 (10)	0.25922 (10)	0.65907 (8)	0.0303 (3)
C11	0.97267 (11)	0.24818 (10)	0.63692 (9)	0.0342 (3)
H11	1.0467	0.2436	0.6298	0.041*
01	1.04380 (8)	0.23683 (9)	0.47008 (7)	0.0485 (3)
02	0.89549 (8)	0.31388 (7)	0.42940 (6)	0.0395 (3)

supplementary materials

O3	0.77263 (8)	0.24370 (8)	0.80386 (6)	0.0445 (3)
H3	0.8186	0.2309	0.8386	0.067*
O4	0.64348 (8)	0.26312 (9)	0.67366 (6)	0.0479 (3)
H4	0.6110	0.2621	0.6295	0.072*
N1	0.26672 (11)	1.02205 (10)	0.55323 (10)	0.0520 (4)
H12	0.3117 (15)	1.0749 (13)	0.5523 (12)	0.078*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.0982 (17)	0.0615 (13)	0.0840 (15)	0.0088 (12)	0.0014 (13)	-0.0160 (11)
C1	0.0641 (12)	0.0484 (10)	0.0906 (15)	0.0088 (9)	-0.0025 (11)	0.0114 (10)
C2	0.113 (2)	0.0760 (15)	0.0786 (15)	0.0189 (14)	-0.0120 (14)	0.0185 (12)
C3	0.0446 (9)	0.0473 (10)	0.0848 (14)	0.0007 (8)	0.0011 (9)	0.0004 (9)
C5	0.0733 (13)	0.0496 (10)	0.0807 (14)	-0.0091 (9)	-0.0151 (11)	-0.0100 (9)
C4	0.0598 (13)	0.0760 (15)	0.146 (2)	-0.0169 (11)	0.0156 (15)	0.0058 (15)
C7	0.0235 (7)	0.0362 (7)	0.0274 (7)	-0.0005 (5)	-0.0044 (5)	-0.0015 (5)
C12	0.0244 (7)	0.0295 (6)	0.0296 (7)	-0.0005 (5)	0.0010 (5)	-0.0004 (5)
C13	0.0259 (7)	0.0350 (7)	0.0307 (7)	-0.0020 (5)	0.0008 (6)	-0.0019 (6)
C10	0.0293 (7)	0.0508 (9)	0.0295 (7)	0.0009 (6)	-0.0083 (6)	0.0011 (6)
C9	0.0326 (7)	0.0384 (7)	0.0261 (7)	-0.0026 (6)	0.0008 (6)	0.0001 (5)
C8	0.0222 (6)	0.0381 (7)	0.0307 (7)	-0.0027 (5)	0.0005 (6)	-0.0015 (6)
C11	0.0207 (6)	0.0447 (8)	0.0372 (8)	0.0010 (6)	-0.0014 (6)	0.0007 (6)
01	0.0295 (6)	0.0745 (8)	0.0414 (6)	0.0125 (5)	0.0099 (5)	0.0059 (5)
O2	0.0382 (6)	0.0515 (6)	0.0290 (5)	0.0071 (5)	0.0002 (4)	0.0011 (4)
03	0.0392 (6)	0.0692 (7)	0.0251 (5)	0.0010 (5)	0.0019 (4)	0.0036 (5)
O4	0.0215 (5)	0.0881 (9)	0.0340 (6)	-0.0020 (5)	0.0028 (4)	-0.0031 (6)
N1	0.0448 (8)	0.0357 (7)	0.0756 (10)	-0.0022 (6)	-0.0041 (7)	0.0009 (7)

Geometric parameters (Å, °)

C6—C5	1.496 (3)	C4—H4B	0.9600
С6—Н6А	0.9600	C4—H4C	0.9600
С6—Н6В	0.9600	C7—C8	1.3795 (18)
С6—Н6С	0.9600	C7—C12	1.3979 (18)
C1—N1	1.490 (2)	С7—Н7	0.9300
C1—C2	1.511 (3)	C12—C11	1.386 (2)
C1—H1A	0.9700	C12—C13	1.4968 (19)
C1—H1B	0.9700	C13—O1	1.2476 (17)
C2—H2A	0.9600	C13—O2	1.2705 (16)
C2—H2B	0.9600	С10—С9	1.384 (2)
C2—H2C	0.9600	C10—C11	1.385 (2)
C3—N1	1.499 (2)	C10—H10	0.9300
C3—C4	1.517 (3)	С9—ОЗ	1.3606 (17)
С3—НЗА	0.9700	С9—С8	1.4039 (19)
С3—Н3В	0.9700	C8—O4	1.3551 (16)
C5—N1	1.518 (3)	C11—H11	0.9300
С5—Н5А	0.9700	O3—H3	0.8200
С5—Н5В	0.9700	O4—H4	0.8200

C4—H4A	0.9600	N1—H12	0.916 (15)
С5—С6—Н6А	109.5	C3—C4—H4C	109.5
С5—С6—Н6В	109.5	H4A—C4—H4C	109.5
Н6А—С6—Н6В	109.5	H4B—C4—H4C	109.5
С5—С6—Н6С	109.5	C8—C7—C12	121.57 (12)
Н6А—С6—Н6С	109.5	С8—С7—Н7	119.2
H6B—C6—H6C	109.5	С12—С7—Н7	119.2
N1—C1—C2	112.85 (16)	C11—C12—C7	118.75 (12)
N1—C1—H1A	109.0	C11—C12—C13	121.11 (12)
C2—C1—H1A	109.0	C7—C12—C13	120.12 (12)
N1—C1—H1B	109.0	O1—C13—O2	124.15 (13)
C2—C1—H1B	109.0	O1—C13—C12	118.18 (12)
H1A—C1—H1B	107.8	O2—C13—C12	117.67 (11)
C1—C2—H2A	109.5	C9—C10—C11	120.88 (13)
C1—C2—H2B	109.5	С9—С10—Н10	119.6
H2A—C2—H2B	109.5	C11—C10—H10	119.6
C1—C2—H2C	109.5	O3—C9—C10	122.90 (12)
H2A—C2—H2C	109.5	O3—C9—C8	117.53 (12)
H2B—C2—H2C	109.5	C10—C9—C8	119.56 (13)
N1—C3—C4	114.51 (16)	O4—C8—C7	123.47 (12)
N1—C3—H3A	108.6	O4—C8—C9	117.53 (12)
С4—С3—НЗА	108.6	С7—С8—С9	119.00 (12)
N1—C3—H3B	108.6	C10-C11-C12	120.22 (12)
С4—С3—Н3В	108.6	C10-C11-H11	119.9
НЗА—СЗ—НЗВ	107.6	C12-C11-H11	119.9
C6—C5—N1	113.88 (16)	С9—О3—Н3	109.5
С6—С5—Н5А	108.8	C8—O4—H4	109.5
N1—C5—H5A	108.8	C1—N1—C3	114.97 (15)
С6—С5—Н5В	108.8	C1—N1—C5	111.29 (14)
N1—C5—H5B	108.8	C3—N1—C5	110.78 (14)
H5A—C5—H5B	107.7	C1—N1—H12	105.0 (13)
C3—C4—H4A	109.5	C3—N1—H12	106.2 (13)
C3—C4—H4B	109.5	C5—N1—H12	108.1 (12)
H4A—C4—H4B	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
O3—H3···O2 ⁱ	0.82	1.85	2.6574 (14)	166
O4—H4…O1 ⁱⁱ	0.82	1.81	2.6321 (15)	178
C7—H7···O1 ⁱⁱ	0.93	2.57	3.235 (2)	128
N1—H12···O2 ⁱⁱⁱ	0.92	1.87	2.776 (2)	170
C1—H1B···O3 ^{iv}	0.97	2.57	3.409 (2)	145
C3—H3A···O1 ^v	0.97	2.55	3.516 (2)	177
C3—H3B···O3 ^{vi}	0.97	2.56	3.351 (2)	139
C10—H10····O4 ^{vii}	0.93	2.38	3.222 (2)	150

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) *x*-1/2, -*y*+1/2, -*z*+1; (iii) *x*-1/2, -*y*+3/2, -*z*+1; (iv) -*x*+1, *y*+1/2, -*z*+3/2; (v) *x*-1, *y*+1, *z*; (vi) *x*-1/2, *y*+1, -*z*+3/2; (vii) *x*+1/2, *y*, -*z*+3/2.

